澳门新葡8455最新网站,澳门新葡www.8455.com最新网站

学术活动(124)

Bifurcation of Typical Cycles in a Planar Piecewise Smooth System

发布者:澳门新葡8455最新网站   发布时间:2020-09-04  浏览次数:10



系列学术活动之(124)

题    目:

Bifurcation of Typical Cycles in a Planar Piecewise Smooth System

摘    要:

In this talk, we introduce the nonsmooth bifurcation around typical cycles (closed curve composed of tangency singularities and regular orbits) for a two-parameter family of planar piecewise smooth system with two zones. By the construction of suitable displacement function (equivalently, Poincare map), the stability and the existence of periodic solutions under the variation of the parameters inside this system are characterized. More precisely, we obtain some parameter regions on the existence of one or two crossing cycles bifurcate from the typical cycles as well as the complete description of the bifurcation diagrams. As applications, several examples are given to illustrate our main conclusions.

报 告 人:

黄立宏 教授 (长沙理工大学)

时    间:

202096日(星期16:30-17:30

地    点:

报告Tencent会议号534170034


报告人概况:

黄立宏,二级教授、博士生导师、长沙理工大学副校长,主要从事微分方程与动力系统理论与应用研究,在SIAM-JMAJDE等学术期刊上发表SCI论文两百余篇,出版专著4部,教材10余本;主持国家自然科学基金面上项目6项,国家对外交流与合作项目3项,省部级项目10余项。先后有9项成果获省科技进步一(2项)、二等奖,教育部自然科学一等奖,科技进步一、二等奖,机械部科技进步一、二等奖等;7项成果获国家教学成果二等奖、省教学成果二等;曾获全国教学名师奖、湖南省教学名师奖、教育部高校青年教师奖等。是湖南省数学会副理事长,省重点学科"应用数学"学科带头人和国家重点学科"控制理论与控制工程"方向带头人,省高校科技创新团队"信息科学中的关键数知识题与数学技术研究"带头人,湖南省新世纪"121人才工程"第一层次人选。




XML 地图 | Sitemap 地图